UC Berkeley CS 168, Fall 2014

CS168 Project 3a

(Version 1.3)

Due: 11:59:59 am (at noon), November 17th, 2014 (hard deadline)

Chang Lan Shoumik Palkar Sangjin Han

Overview

In this project, you will implement a basic firewall running at end hosts. A firewall is a “security system
that controls the incoming and outgoing network traffic by analyzing the data packets and determining
whether they should be allowed through or not, based on a rule set” [Wikipedia]. Unlike the previous
projects of this course, where you worked in simulated environments, you will deal with real packets in
a Linux-based virtual machine (VM) for this project.

This month-long project is divided into two parts, and each part has it own submission deadline. In the
first part (3a), which is covered in this document, you are asked to build a stateless firewall on top of
the given framework. In the second part (3b), you will be extending the functionality of your firewall to
support stateful rules at the application layer. Note that your solution for Project 3a will also be used as
a base for Project 3b. It is very important to keep your code readable and extensible.

Your task for Project 3a is to implement a firewall that filters out packets based on simple firewall
(Protocol/IP/Port and DNS query) rules on a packet-by-packet basis. Upon successful completion of
this project, you will be able to:

Understand the basic functionalities of a firewall.

Be familiar with the details of TCP/IP packet formats.
Explore low-level packet processing.

Utilize various tools for network testing.

Besides writing code, you will need to (and should) spend a lot of time to understand protocol
specifications, to design algorithms, and to test your application. Start working on the project as soon as
possible.

Changelog

v1.3 (11/5/2014)

e Removed anything that mentions timers.

v1.2 (10/30/2014)
o Changed the VM image link to http://bit.ly/cs168proj3

v1.1 (10/29/2014)

e Changed due time description in order to avoid confusion

v1.0 (10/27/2014)

o First release

http://www.google.com/url?q=http%3A%2F%2Fbit.ly%2Fcs168proj3&sa=D&sntz=1&usg=AFQjCNHJ804qI-vQKMnzeFbuv89_UxNwXg

VM Setup

A personal firewall must have the ability to intercept incoming and outgoing network packets from
network interfaces. Since this operation is security-critical and dependent on your operating system, we
provide a VM image that is preconfigured to be readily used for the project. To run the VM, you will
need to use your personal x86 laptop/desktop, rather than instructional machines. The VM runs on the
Ubuntu Linux 14.04 Desktop edition.

Understanding the VM Network Configuration

The following figure illustrates how the VM network is configured.

Your laptop
VM

Applications
VirtualBox Linux TCP/IP
network stack

_ !

(. Physical je o1 |¢ S ext [firewall [int

interface

The arrows in the diagram represent the flow of network traffic (packets). In the VM, there are two
network interfaces, namely ext and int (short for “external” and “internal”, respectively), and the
firewall in between, as a bump-in-the-wire. All outgoing packets of the VM will be sent through the
int interface. Similarly, all incoming packets will be received via the ext interface. Your firewall
should inspect packets received from one interface and selectively pass them to the other interface. For
example, when the firewall receives an incoming packet from ext, it determines whether to pass the
packet through based on the firewall rules. If so, the firewall transmits the packet onto int, to be
processed by the Linux TCP/IP stack. Similar things happen for outgoing packets as well.

When the firewall is not running, nothing relays packets between ext and int. Thus the VM has no
access to the outside network by default. Don’t be surprised if you cannot access to any websites
with Firefox in the VM. Once you have correctly implemented your firewall, or after running “sudo
./main.py --mode bypass” (explained later), your applications in the VM will have access to the
Internet.

Note: Due to some internal issues, you will not see any packets on the int interface with
tcpdump/wireshark, while the firewall is not running.

For simplicity, we made the following design decisions for the project:

e ext and int are Ethernet interfaces, which carry Ethernet frames (with 14-byte Ethernet
header followed by its payload, mostly an IP packet). However, your firewall will only need to
care about IP packets; it receives and sends IP packets, and all Ethernet-related operations will
be handled by the code we have provided.

IPv6 was completely disabled in the VM. All you see in the firewall is IPv4 packets.
Your firewall will not receive any fragmented [P packets.

Another thing worth mentioning is that there is a NAT' module in VirtualBox, which connects the VM
to the outside network. While the details of NAT is out of the scope of this project, there are two things
to remember:

e The IP address of the VM (statically set to 10.0.2.15) will not be seen from the outside
network. This is because the NAT module translates it into the IP address of the host (your
laptop) for every outgoing packet, and the other way around for every incoming packet.

e By default, the NAT module will not allow incoming connections destined for the VM (e.g.,
the NAT module will not forward incoming TCP SYN packets). In other words, you cannot run
network server applications in the VM.

VM Installation

1. Download and install the latest version (4.3 is recommended) of VirtualBox, from
https://www.virtualbox.org/wiki/Downloads
2. Download the VM image, from http://bit.ly/cs168proj3
a. It may take a while to download the image, due to its large size (> 2.2 GB).

b. Make sure you have enough disk space, as the compressed image gets bigger when it is
imported. We recommend securing at least 10 GB of free space.
3. Launch VirtualBox, and import the VM.
a. Select “File — Import Appliance”
b. Click the “Open appliance...” button
c. Choose “cs168proj3.ova”
4. Once imported, select “cs168proj3” on the left panel of the main window, and click the “Start”
button to launch the VM.

Account

! Network Address Translation: http://en.wikipedia.org/wiki/Network address_translation

https://www.google.com/url?q=https%3A%2F%2Fwww.virtualbox.org%2Fwiki%2FDownloads&sa=D&sntz=1&usg=AFQjCNFpVPZ1LROUoLBW-3yzRbtHjKwm8w
http://www.google.com/url?q=http%3A%2F%2Fbit.ly%2Fcs168proj3&sa=D&sntz=1&usg=AFQjCNHJ804qI-vQKMnzeFbuv89_UxNwXg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNetwork_address_translation&sa=D&sntz=1&usg=AFQjCNEOnGRi4-6TQwwrCQ7WFieoMifzmA

The username is “cs168” and its password is “F1lrewa! !” (number one instead of letter I and
exclamation mark instead of letter L), without quotes. Feel free to change the password if your left
hand fingers get tired.

Many applications (including the firewall itself) you will run on the VM need root permission, as they
need to perform privileged network operations. Your account is granted sudo privileges without the
password.

(Optional) Setting Host-Only Interface

You can skip this configuration if you do not mind working in the Ubuntu desktop environment.

Some of you may want to connect to the VM via SSH to work on the project, rather than directly using
the GUI of the VM. For the connection between the host and the VM, you need to follow the procedure
(based on Mac OS X, but it should be similar on other operating systems) below.

1. Turn off the VM.
2. Add a host-only interface for the host
Select “VirtualBox — Preferences” in the menu.
Choose the “Network™ tab.
Choose the “Host-only Networks” tab.
Click the “+” button on the right.
Click the screwdriver button on the right.
On the “Adaptor” tab,
i. Set the “IPv4 Address” to 172.16.122.1
ii. Set the “IPv4 Network Mask™ to 255.255.255.0
g. On the “DHCP” tab,
i. Unmark the “Enable Server” checkbox.
3. Add a host-only interface for the VM
Select the “cs168proj3” VM on the left panel of the VirtualBox Manager window.
Click the “Settings” button.
Choose the “Network™ tab.
Choose the “Adaptor 2” tab.
Mark the “Enable Network Adaptor” checkbox.
i. Attached to: Host-only Adapter
ii. Name: vboxnet0 (or anything else you created above)
Click on the “Advanced”
Set the “Adapter Type” to “PCnet-FAST III”
Set the “MAC Address” to 08002710718d (in hex)
. Mark the “Cable Connected” checkbox.
4. Check if everything is OK.
a. Launch the VM
b. Open a terminal window.

Mmoo Ao o

o a0 o

oot g o

c. Run the command “ifconfig”.
d. You should be able to see the “host” interface.

The IP address of the host-only interface in the VM is 172.16.122.2. In the host (your laptop), you can
make a SSH connection to the VM, with “ssh ¢s168@172.16.122.2” (on Linux or MAC) or your
favorite SSH client (on Windows).

Network connections over this dedicated interface will not be affected by the firewall. All outgoing
packets from the VM with a destination IP address in 172.16.122.0/24 will be sent through the host
interface, instead of the int interface.

Project Specification

Provided Files

All files needed to do the project reside in the /home/cs168/proj3 directory. Your task is to
implement the project specification in the firewall. py file. Remember that this file is the only
source code you submit for the project. All your modification must be done only in this file.

The /home/cs168/backup_proj3 directory also contains the same files, just in case you need the
original version.

main.py

This is the main executable file for your firewall. Modify this file only for debugging purposes. It
contains some low-level code to intercept/inject packets from/to Linux network interfaces. Because of
this, you will need root privileges to run this script.

sudo ./main.py [--mode <module name>] [--rule <rule file name>] [--optl argl] ...

There are two predefined options:

e --mode: It specifies a Python module name that implements Firewall class. The default
argument is “firewall”, which will run firewall.py.
e --rule: It specifies a rules file name. The default argument is “rules.conf”.

All other command-line options will be parsed and stored in the config dictionary, which is given to
the constructor of Firewall class.

bypass.py

This is a dummy example that implements the bypass mode. In this mode, all incoming/outgoing
packets will be passed regardless of the firewall rules. This mode can be useful when you want the VM
to communicate without interference from the firewall, such as:

Installing new applications

Analyzing how network protocols work in normal conditions with tcpdump/wireshark
Copying your source code to outside the VM for final submission

... SO on.

The following command will run in the bypass mode:

sudo ./main.py --mode bypass

The Firewall class implemented in this file will give you some basic ideas on how to implement your
own firewall in firewall. py, such as how to pass packets with the . send_ip_ packet() method.

firewall.py

This is the file containing the skeleton for the code you need to implement. This module currently does
not do anything, and all packets between the int and ext interfaces will be dropped. Your task is to
complete the Firewall class in the file so that packets can be filtered out based on the firewall rules
file. The skeleton of the class looks as follows.

class Firewall:
def __init_ (self, config, iface_int, iface_ext):
self.iface_int = iface_int
self.iface_ext = iface_ext

def handle_packet(self, pkt_dir, pkt):
pass

init ():
e You should load the rules file (the filename is given in config[‘rule’]).
e Alsoread geoipdb.txt here.

handle_packet():
e Whenever a packet is captured, this handler will be invoked.
e pkt_dir indicates the direction of the packet. It can be either of the following two values:
o PKT_DIR_INCOMING: The packet has been received from the ext interface. You
should call self.iface_int.send_ip_packet() to pass this packet.
o PKT_DIR_OUTGOING: The packet has been received from the int interface. You
should call self.iface_ext.send_ip_packet() to pass this packet.
e pkt is a Python string that contains the actual IP packet, including the IPv4 header.
e To drop the packet, simply omit the call to . send_ip_packet().

Rules File Format

A firewall rule describes a type of packets that the firewall should pass/drop. A rules file contains
firewall rules, each of which is written in a single line. rules. conf will be used by default, unless
specified otherwise in the command line. The rules file decides whether to drop a packet or not, when
the packet content/header matches one the defined rules. If multiple rules are matched, use the last one.
There are two type of firewall rules: Protocol/IP/Port rules and DNS rules.

Note that the content of the rules file can be arbitrary. The provided rules. conf file in the proj3
directory is just an example, and various rules files will be used to grade your solution. Your firewall
should work correctly with any rule files that conform to the following format.

Protocol/IP/Port Rules

You apply Protocol/IP/Port rules for every packet that Firewall.handle_packet () takes. All
protocol, external IP address, and external port fields must match to apply the verdict. “External”
means “outside”, thus it may represent either the source or destination IP address/port, depending on
the packet direction. For example, if an incoming packet has a UDP/IP header 8.8.4.4:53 —
10.0.2.15:32154, the external IP is 8.8.4.4 and the external port is 53.

Format: <verdict> <protocol> <external IP address> <external port>

Field Possible values/formats Description
verdict 1. “pass” ® pass means that a matched packet should be
2. “drop” handed over to the interface on the other side,

with the send_ip_ frame() method
(e.g., to int if received from ext).
e drop discards the packet

protocol 1. “tcp” e This field examines the Protocol field in the
2. “udp” IPv4 header of packets.
3. “icmp”
external [P | 1. “any” e For country codes, see the “GeolP DB”
address 2. a2-byte country code section.
3. asingle IP address e any isidentical t0 ©.0.0.0/0
(e.g.,128.32.244.172) e 1.2.3.4isidenticalto1.2.3.4/32

4. an IP prefix
(e.g.,123.34.128.0/17)

external 1. “any” e [t specifies TCP/UDP port numbers. For
port 2. asingle value ICMP packets, it is for the ICMP Type field.
3. arange e The range is inclusive (i.c., 2000-3000

(e.g., 2000-3000) includes 2000, 2001, ..., and 3000)

DNS Rules

Format: <verdict> dns <domain name>
e verdict: “pass” or “drop”
e domain name: e.g., “bar.foo.com” (full domain name) or “*.gov”’ (wildcard domain name)

o

@)
@)
@)

A full domain name is for exact match.

“* . gov” matches not only “fda.gov” but also “www.fda.gov”.

“*.foo.com” does not match “foo.com”

The asterisk (“*”’) can only be used at the leftmost DNS label, alone.
m Good syntax: “*”, “* net”, “*.google.com”, ...

99 ¢,

m Bad syntax: “mail.*.com”, “*.foo.*.org”, “www*.salary.com”, ...

You apply DNS rules only for DNS query packets. More specifically, the packet should satisfy all of
the following conditions to be considered for DNS rule matching.

e [tis an outgoing UDP packet with destination port 53.

e [t has exactly one DNS question entry.

Example

o

There may be other non-empty sections (Answer, Authority, and Additional)

The query type of the entry is either A or AAAA (QTYPE == 1 or QTYPE == 28), and
The class of the entry is Internet (QCLASS == 1).

Suppose that Starbucks wants to provide free WiFi, but with very restrictive rules as follows.

drop udp

drop tcp
pass tcp
pass tcp
pass tcp

% punish
drop tcp
drop tcp

% ahem...
drop dns

any

% allow only

any
any
any
any

% allow “ping”, but no other types of ICMP packets
drop icmp any any

pass icmp any ©

pass icmp any 8

% allow DNS packets only to Google DNS servers

any

pass udp 8.8.8.8 53
pass udp 8.8.4.4 53

HTTP(80), HTTPS(443), and Skype(1024-65535)
any

80

443

1024-65535

Italy (for not having Starbucks) and MIT (for the greedy /8 address block)
it any
18.0.0.0/8 any

peets.com

drop dns *.peets.com

10

The rules implemented above do not allow any TCP/UDP/ICMP packets by default, but with some
explicit exceptions.

Performance

Performance is one of the most important aspects of a firewall. Typically, commercial firewalls can
process more than millions of packets per second. For this project, however, we will focus on its
functionality and correctness, rather than performance. After all, the firewall is software-based, runs in
a virtualized environment, and will be implemented in Python; it would be impossible to match the
performance of commercial firewalls.

However, there will be minimum performance requirements. If your firewall implementation
underperforms by a factor of five when compared to our reference implementation with the same
rule set, you may lose some points. The performance will be measured in the number of processed
packets, for a certain period of time (> 20 seconds, including startup time). Our reference
implementation does not incorporate any sophisticated optimizations, so you do not need to worry
much unless your implementation is very inefficient.

11

Notes

e Rule matching:
o If none of the rules match, just pass the packet.
m Thus you should always pass non-TCP/UDP/ICMP packets.
If multiple rules match, apply the last one’s verdict in the rules file.
DNS request packets are inspected not only by DNS rules, but also by Protocol/IP/Port
rules.
DNS rules may appear before Protocol/IP/Port rules.
For this project, we will not have more than 30 rules in the file, so linear scanning over
the rules for every packet is perfectly fine.

o The wildcard domain name matching described here does not conform to the standard

(RFC 4592).
e Analyzing packets

o handle_packet () will be called only for non-fragmented IPv4 packets.

o Do not worry about packets with wrong TCP/IP checksum.

o Ifapacket is so malformed that you cannot decode the packet for rule matching, simply
drop the packet.

m Also, if a DNS query packet (UDP with destination port 53) is too malformed
to decode, you should drop the packet, even if there is no DNS rules.

o Ifa DNS packet has non-question entries, you should consider the packet for DNS
rules, as long as QDCOUNT==1 and the question entry conforms to the DNS rule
matching conditions.

m For example, dig will include one “Additional” entry in its DNS packets, but
your firewall should apply DNS rules for those packets.
Y our program should not crash.
Watch out for endianness. Most network protocols follow network order.
m http://en.wikipedia.org/wiki/Endianness#Endianness_in_networking
e Parsing the rules file:

© All rules are case-insensitive, including domain names and country codes. For
example, “tcp”, “TCP”, and “tCp” must be all allowed.

o You can assume that the syntax/format of the file is always correct. For example, we
will not trick you with 128.50.132.20/24, which has bad IP prefix syntax.

o Ignore empty lines and comment lines (lines beginning with “%”)

12

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEndianness%23Endianness_in_networking&sa=D&sntz=1&usg=AFQjCNGQ3x8g-mkvGH8nCfWbf1sLQisZFA

GeolP DB

In the proj3 directory, we provide the database file geoipdb . txt that has geolocation-mapping
information of the IP address space. You should use this file to implement the country-based blocking
in your firewall. In the file, each line represents an IPv4 address range and its corresponding country
code, in the following format.

Format

<start IP address> <end IP address> <2-character country code>

e start [P address, end IP address: These are dot-separated [Pv4 addresses. The given IP address
range is “inclusive” in that it includes both start and end IP addresses.
e 2-character country code:
o ISO standard country codes: http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
o There are also non-standard country codes: A1, A2, EU, AP.
o We use the same country codes for the rules file (again, case-insensitive!)

The database file should be loaded into memory in Firewall. init__ ().

Notes

1. Note that we may use a different version of the database file for grading. However, the
following two assumptions will always hold:
a. All IP address ranges given in the file do not overlap each other. Hence, no longest
prefix matching will be required.
b. All IP address ranges are sorted in ascending order in the file.
2. Some IP addresses may not match any records in the database. It is normal, so don’t worry.
3. Your lookup code for country matching should be “reasonably” fast, to meet the minimum
performance requirements described above.
a. No linear search over the entire database or a specific country for every packet!
b. Instead, consider using more efficient algorithms and data structures, such as binary
search, radix tree, etc.
c. Ifloading of the database takes more than a few seconds, you are probably not on the
right track.
4. For this project, we assume that the database is always correct and up-to-date.

The original database was retrieved from here: http://dev.maxmind.com/geoip/legacy/csv/

13

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FISO_3166-1_alpha-2&sa=D&sntz=1&usg=AFQjCNHZ7RoqlQgKwz3TWK9ac8ko0bHdKQ
http://www.google.com/url?q=http%3A%2F%2Fdev.maxmind.com%2Fgeoip%2Flegacy%2Fcsv%2F&sa=D&sntz=1&usg=AFQjCNE57j7aaXGf_8u5x3PaPf0_KLVg_g

References

The following documents provide the detailed protocol specifications to accomplish this project.

e [Pv4 header:
o http://en.wikipedia.org/wiki/IPv4
o http://tools.ietf.org/html/rfc791
o [P protocol numbers: http:/tools.ietf.org/html/rfc790
e TCP header:
o http://en.wikipedia.org/wiki/Transmission_Control Protocol
o http://tools.ietf.org/html/rfc793
e [CMP header:
o http://tools.ietf.org/html/rfc792
e DNS packet format:
o http://tools.ietf.org/html/rfc1035

You will (and should!) spend more time for testing than coding. We list some of the most helpful
network testing tools below, all of which are preinstalled in the VM. There are a lot of online tutorials
you can find on the Internet.

e tcpdump/Wireshark

o tcpdump is a command-line packet sniffer that captures and display packets on
networks. It also decodes packet headers for various protocols, which is very useful to
verify the correctness of your own packet decoder.

o Wireshark (formerly known as Ethereal) provides similar features with a graphical
user interface.

o They can also be used to check the behavior of your firewall. For example, if an
outgoing packet is seen at both int and ext, it implies that the firewall successfully
relayed the packet between those interfaces.

o A short YouTube clip on Wireshark: http://youtu.be/6 X5TwvGXHPO

e nslookup/dig
o nslookup and dig are command-line tools for querying the Domain Name System.
o You can use these tools to generate DNS query packets.

e wget/curl
o wget and curl are handy tools to generate HTTP requests without using browsers.

® nc
o nc (short for netcat) is a popular tool for generating TCP/UDP connections.
o Refer to this page for more packet crafters: http://sectools.org/tag/packet-crafters/

We will release an introductory document for these protocols/tools at the course webpage.

14

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv4&sa=D&sntz=1&usg=AFQjCNHmoCg3isuirQzV7G9ODjPwtkYzRQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc791&sa=D&sntz=1&usg=AFQjCNEJfQPCTuiIQ5SOWZU5JkeJPOflFQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc790&sa=D&sntz=1&usg=AFQjCNHAgmjaBjZdbZbQR0CrpXxx_vb_fA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTransmission_Control_Protocol&sa=D&sntz=1&usg=AFQjCNG8qHseyP3kDHjPS-yUuT0G1U1j0g
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc793&sa=D&sntz=1&usg=AFQjCNGSQql9wx5IaQpfyu-HrgBaXztL3g
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc792&sa=D&sntz=1&usg=AFQjCNE1Q6h22TBPHzK-UXgo9ypg57yn_g
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc1035&sa=D&sntz=1&usg=AFQjCNGoMCGJSkf2EMrRNWf4wJkpURk8GQ
http://youtu.be/6X5TwvGXHP0
http://www.google.com/url?q=http%3A%2F%2Fsectools.org%2Ftag%2Fpacket-crafters%2F&sa=D&sntz=1&usg=AFQjCNFQIkK-A7qgM-N2Yv5oQ8IMyq61Cw

Logistics

Collaboration Policy

The project is designed to be solved independently, but you may work with at most one partner if you
wish. Grading will remain the same whether you choose to work alone or in partners; both partners will
receive the same grade regardless of the distribution of work between the two partners (so choose a
partner wisely!).

By the nature of this project, it could be hard to “split” the work between teammates. Instead, consider
pair programming (http://en.wikipedia.org/wiki/Pair_programming), if you choose to work in partners.

Submission Instructions

Turn in a . tar file with both you and your partner’s last names in the file name (For example,
project3a-han-lan.tar or project3-palkar.tar) on an instructional machine. Your tar file
should include:

e firewall.py: remember, this file should include all your code.
e readme.txt
o Your (and your partner’s) full name and login name
o (optional) Any comments/concerns on the project. This will not affect grading. We will
collect your opinions anonymously to design future projects better.

$ tar -cf project3a-han-lan.tar firewall.py readme.txt
$ submit project3a

Regrade & Late Policy

Your regrade request must be made within seven days after score release. Submit your new tar file on
an instructional machine, then email clan@eecs.berkeley.edu.

e final score = max{old score, new score * (regrading penalty)} * (your original late penalty)
o regrading penalty = 0.9 - (code difference in tokens) * 0.001
m We will provide a script that measures code difference.
o Of course, regrading penalty doesn’t apply if it turns out be auto-grader’s fault.
e You have only one opportunity for regrade request.

The late policy is simple; no slip dates. If submission is late, it is penalized as follows:

e <24 hours late, you lose 10%
e <48 hours, 20%

15

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPair_programming&sa=D&sntz=1&usg=AFQjCNGQrRu9gdp1pD5dpLd6435YBXFPnw
mailto:clan@eecs.berkeley.edu

e <72 hours, 40%
e More than three days late, you can no longer hand-in the assignment.

Cheating

Simply put, DO NOT EVER TRY IT. We will do our best to protect our students from losing the value
of their honestly earned grades due to cheaters. We may perform manual inspection and use automated
tools (do not underestimate them) to detect potential plagiarism over all submissions.

Refer to the course webpage for more information. If you are not sure what may constitute cheating,
consult the instructor or GSIs. Assignments suspected of cheating or forgery will be handled according
to the Student Code of Conduct®. Apparently 23% of academic misconduct cases at a certain junior
university are in Computer Science’, but we expect you all to uphold high academic integrity and pride

in doing your own work.

2 http://sa.berkeley.edu/code-of-conduct
3 http://www.pcworld.com/article/194486/Computer_Science_Students_Cheating.html

16

http://www.google.com/url?q=http%3A%2F%2Fwww-inst.eecs.berkeley.edu%2F~cs168%2Ffa14%2Fgrading.html&sa=D&sntz=1&usg=AFQjCNGtPm_Pnp1zLM0UfnjxMX_yt9jCSA
http://www.google.com/url?q=http%3A%2F%2Fsa.berkeley.edu%2Fcode-of-conduct&sa=D&sntz=1&usg=AFQjCNFahinAA692vjcF0r3q5jlzD6zytg
http://www.google.com/url?q=http%3A%2F%2Fwww.pcworld.com%2Farticle%2F194486%2FComputer_Science_Students_Cheating.html&sa=D&sntz=1&usg=AFQjCNGOHZ6xsqwLr8BCUJLU9NkzIgMxFQ

DOs and DON’Ts

DOs

It is okay to use external libraries or applications to test your firewall.
You can modify not only firewall. py but also other source code files, but only for
debugging purposes.

o Do remember that you only submit the firewall. py file, and it should work with the

original code of other files.

Backup is always a good idea.
Feel free to surf the Web for general ideas, such as Python language/library references,
network protocol specifications, testing tool usages, and debugging tips.
You can discuss with anyone about algorithms, approaches, and concepts without details, but
stay away from your computer/code while doing so.
We encourage you to share test strategies with your fellow students on Piazza, but only at the
high level (e.g., no test code).
We recommend using Firefox in the VM, rather than installing other web browsers. The
Firefox installed in the VM was specially configured to suppress some seemingly strange
behaviors.

DON’Ts

Do not create extra threads or processes.

Do not use any libraries other than Python 2.7 standard modules to implement the firewall.

Do not alter the network configurations of the VM. Do not install “Network Manager” package.
The VM relies on manual/delicate configurations to provide the firewall functionalities. You
may have to reinstall the VM if some configuration gets broken.

All parts of the solution code must be your own; copying someone else’s code snippet
(including from public repositories such as GitHub, Pastebin, etc.) is strictly prohibited.
Do not share your code with anyone, other than your project partner.

Do not post your code on any public repositories like GitHub and Pastebin.

Do not post any project-specific questions on Internet forums other than Piazza.

The project is led by Chang Lan (main), Shoumik Palkar, and Sangjin Han. Avoid asking other
GSIs about project-specific questions.

17

UC Berkeley CS 168, Fall 2014

CS168 Project 3b

(Version 1.0)

Due: 11:59:59am (at noon), December 3rd, 2014 (Hard deadline)

Anurag Khandelwal = Shoumik Palkar Sangjin Han

Overview

In this project, you will implement a basic firewall running at end hosts. A firewall is a “security system
that controls the incoming and outgoing network traffic by analyzing the data packets and determining
whether they should be allowed through or not, based on a rule set” [Wikipedia]. Unlike the previous
projects of this course, where you worked in simulated environments, you will deal with real packets in a
Linux-based virtual machine (VM) for this project.

Recall that in 3a, you implemented a stateless passive firewall: that is, your firewall could do its job by
considering each packet individually, and it did not generate traffic.

In 3b, you will be extending your solution for 3a to make a stateful active application-layer firewall. You
will use the same framework, VM, test harnesses, tools, and as in 3a. Now, your firewall should generate
packets in response to denied packets. Upon completing this part, you should:

e Be familiar with the HTTP and DNS protocols.
e Understand the difference between stateful vs. stateless, active vs. passive firewalls.

Besides writing code, you will need to (and should) spend a lot of time to understand protocol
specifications, to design algorithms, and to test your application. Start working on the project as soon as
possible.

You will likely find the supplementary document from 3a useful for this part, as well.
http://www-inst.eecs.berkeley.edu/~cs168/fal4/projects/project3a/supplement.pdf

Good luck, and have fun.

Changelog

Always check the latest version of this document. It is your responsibility that your solution conforms to
the latest version of the spec.

v1.0 (11/17/2014)

e First release

Requirements

Overview

In the project, you must implement three new rules (The rules filename will be still given with
config[‘rule’] asin 3a).

1. deny tcp <IP address> <port>
2. deny dns <domain name>
3. log http <host name>

The format of IP address, port, and domain name are defined in the same way as in Project 3a. For
host name, see below.

Firewall behavior from Project 3a will remain the same, for instance you should still “pass a packet if
none matches” and “follow the verdict of the last matching rule”. However, for Project 3b, we will
neither test firewall rules defined in 3a (pass/drop rules) nor country-based matching, so your
grade for 3a will be mostly decoupled from your grade for 3b. If your solution for 3a was incomplete,
don’t worry too much.

For the sake of simplicity, you can make the following assumptions:
e The rules file has always correct syntax, as defined in Project 3a.
e All packets seen by the firewall are neither corrupted nor malformed.
e All TCP connections with external port 80 are valid HTTP connections.

o However, your HTTP header parser should not be overly restrictive. Many web servers in
the wild have slightly different implementations, and your parser should be flexible
enough to parse them correctly. For example, content-1length (not Content-
Length) is a valid header field name. When in doubt, consult RFC 2616.

o Also, you should be able to deal with out-of-order TCP packets, caused by reordering,
drop, or loss. See below for details.

1. Injecting RST Packets: deny tcp

In addition to dropping a matching TCP packet, respond to the initiator (src addr, src port) witha
TCP packet with the RST flag setto 1.

If you simply drop these packets (with a drop rule), then the client application will try sending SYN
packets several times over the course of a minute or so before giving up. However, if you also send a RST
packet to the client (with a deny rule), the application will give up immediately.

When generating the reset packet you must carefully compute both the TCP and IPv4 checksum; consult
Wikipedia or the relevant RFCs for details. http://locklessinc.com/articles/tcp checksum/ also has some C
code (go through the checksum1 () function) that might help you figure out how to implement these.

Please do not copy checksum code directly from the Internet, as we will be using tools to detect copied
code.

2. Injecting DNS Response Packets: deny dns

In addition to dropping a matching DNS request, send a DNS response to the internal interface pointing to
the fixed IP address 54.173.224.150. Consult section 4.1.1 and 4.1.3 of RFC 1035.

If the QTYPE of a matched DNS request is AAAA, drop the packet, and do not send a response.

If you implement this correctly, then your browser will direct you to a placeholder website. Your response
should be in the answer section should have type A (i.e. it is an address) and a TTL of 1 second. Make
sure you copy the ID field as appropriate and the RCODE field as appropriate.

File Edit View History Bookmarks Tools Help

i The site you requested is not a... u gk]

QEJ I(-“ IIbapedia.bulbagarden.net/wiki/Pokémon_Red_and_Blue_Versions v & I[_a' Google e @ @ ' @ v @ v

bulbapedia.bulbagarden.net has been blocked by your firewall. If you've found this site, then your firewall generates
DNS responses correctly.

We apologize for the inconvenience. Have this picture of a kitten.

We apologize if we gave you a picture of too many kittens.

If your firewall generates DNS rules properly, you should see a page similar to this.

3. HTTP Log: 1log http

For matching host names, log HTTP transactions over TCP connections with external port 80 to

http. log in the current directory. An HTTP transaction is defined as a pair of an HTTP request and
an HTTP response. For each transaction, leave a log according to the following format (space-delimited)
in a single line:

host_name method path version status code object size

To understand what these values log, consider the following HTTP request:

GET / HITP/1.1

Host: google.com

User-Agent: Web-sniffer/1.0.46 (+http://web-sniffer.net/
Accept-Encoding: gzip

Accept-Charset: IS0O-8859-1,UTF-8;9=0.7,*;g=0.7
Cache-Control: no-cache

Accept-Language: de,en;g=0.7,en-us;g=0.3

And the corresponding response:
HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/
Content-Type: text/html; charset=UTF-8
Date: Mon, 18 Nov 2013 23:58:12 GMT
Expires: Wed, 18 Dec 2013 23:58:12 GMT
Cache-Control: public, max-age=2 592000
Server: gws
Content-Length: 219
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

For this example you would log the following (word in this section means words as in parts of a sentence,
i.e., whitespace separated values):
e host_name: Use the value of Host request header field. If it is not present, use the external IP
address of the TCP connection. (In the above host_name is google.com)
e method: The first word of the request line (e.g. GET, POST, PUT, DROP). It will be mostly GET.
e path: The second word of the request line. (/ in this case)
e version: The third word of the request line (e.g., HTTP/1.0 or HTTP/1.1) (in this case
HTTP/1.1)
e status_code: The second word of the response line. (in this case 301)
e object_size: Use the Content-Length response header field. Its value will be identical to
the actual HTTP response payload size. If this field is not present, then this field should be -1. (In
this case it is 219).

Hostname Matching

host name in an http rule can be either a domain name or a single IPv4 address (neither prefix nor any).
Domain names (full/wildcard) are used in the same way as in Project 3a. The following shows some
examples of valid hostnames.

e google.com
o only matches google.com
e * facebook.com
o matches foo.facebook.com and bar.baz.facebook.com, but not facebook.com
e 123.45.67.89
o matches 1) if the Host header field value is 123.45.67.89, or
2) if the Host header field is not present and the external IP address is 123.45.67.89.

o matches every HTTP request.

Those host names are matched against the Host header field value in HTTP requests. If the header is not
present, use the external IP address in the quad-dotted notation as a fallback.

If multiple http rules match, log the transaction only once.

Notes and Hints

Packets to inspect:

e Note that since we assume you are not running a web server on port 80, the external port for
requests should be the destination port, and the external port for responses should be the source
port.

You can assume that all TCP traffic on port 80 is actually HTTP.
Because we only check port 80 for HTTP, this cannot match HTTPS (nor should it), whose
default port number is 443.

Log file:
e The name of log file is fixed: http. log (in the current directory)
e Your firewall should append to an existing log file, or create it if it does not exist.
o f = open(‘http.log’, ‘a’) will do this for you.
e Flush the log file after each write, with f.flush()
o Ifyoudon’tcall f.flush() after each write, the your firewall process would keep
buffering data and delay actual writes to the file for unpredictable amounts of time.
o This could mean the autograder sees nothing written by your firewall during grading.
o Inshort, f.flush() after each use!
TCP reassembly
o The communication between HTTP applications (web browser/server) with a byte stream for
each direction. What your firewall sees is packets segmented by the TCP layer. To parse
HTTP requests and responses, you should reassemble TCP segments into byte streams, based
on the TCP sequence numbers. This process is similar to what the “Follow TCP Stream”

feature does in Wireshark (see the supplementary document).

o The HTTP request/response header may span multiple packets.

o One common example: an HTTP request/response header is bigger than MSS, so it is
broken into multiple TCP packets.

o One extreme example: suppose an HTTP request is segmented into single-byte TCP
packets, i.e., “G”, “E”, “T>, « >, />, «” “H”, “T”, “T”, “P”, ... Can your firewall
handle this case?

o Packets may be dropped/reordered arbitrarily. To make it easier to handle this we suggest you
drop out-of-order packets with a forward gap, on a per-connection basis, for each direction,
so that both the endpoint and the firewall only process in-order packets. TCP RTO will
ensure that packets are retransmitted. While this negatively impacts performance, it simplifies
code and reduces the amount of state that your firewall needs to maintain.

o Suppose you were expecting SEQ 4000 for the next packet. If you get a TCP packet
with SEQ 5000, you drop the packet.

o On the other hand, if you get a TCP packet with SEQ 3000, you should pass the
packet, since it indicates retransmission of lost packets. If you drop the packet, the
connection will be stuck.

Note that TCP sequence numbers are 32-bit unsigned integers, so they can wrap around.
Assume that HTTP is not pipelined (we disabled this feature in Firefox), so requests and
responses always begin at the beginning of the payload of a TCP packet.

Dealing with Persistent HTTP Connections

You should handle persistent HTTP connections. If a connection is persistent (refer to
http://en.wikipedia.org/wiki/HTTP persistent connection), then message length will be specified
via Content-Length (which we define as the HTTP payload size in bytes, excluding the
header).

Responses to HEAD request do not have HTTP payload, but they may have non-zero Content-
Length values (section 14.13 in the RFC document).

Note that HTTP requests may have non-empty payload (e.g., POST method)

Your firewall must support concurrent HTTP connections. It is typical that a web browser opens
tens of connections to access a web page.

o Also, dropping out-of-order packets should be done on a per-connection basis.
Your implementation must not waste memory unnecessarily. For example, when you download a
large file via HTTP, your firewall should not store the entire byte stream. You only need to buffer
partial HTTP headers.
Again, your firewall should not crash.

Examples

1. Consider “log http *.berkeley.edu”. Opening http://www-inst.eecs.berkeley.edu/~cs168/fal4 in

Firefox will produce the following log entries, after clearing the browser cache:

www-inst.
www-inst.
www-inst.
www-inst.
WWW.eecs.
www-inst.
www-inst.
www-inst.

eecs
eecs
eecs
eecs

.berkeley.
.berkeley.
.berkeley.
.berkeley.

edu GET /~cs168/fald HTTP/1.1 301 254
edu GET /~cs168/fald/ HTTP/1.1 200 273
edu GET /~cs168/fald/overview.html HTTP/1.1 200 2581
edu GET /~cs168/fald/content.html HTTP/1.1 200 1569

berkeley.edu GET /Includes/EECS-images/eecslogo.gif HTTP/1.1 200 828
eecs.berkeley.edu GET /~cs168/fald/images/Keycard_A.png HTTP/1.1 200 324
eecs.berkeley.edu GET /~cs168/fald/images/Book.png HTTP/1.1 200 174
eecs.berkeley.edu GET /favicon.ico HTTP/1.1 200 ©

Details (the ordering, fetched objects, or their size) may vary, due to various reasons.

2. Consider “log http *”.In aterminal window, “wget google.com” will produce the following log

entries (again, details may vary).

google.com GET / HTTP/1.1 301 219
www.google.com GET / HTTP/1.1 200 -1

Note that in Example 1, the request for favicon.ico explicitly specified Content-Length as 0, whereas

in Example 2, the request to www . google.com for / did not specify a Content-Length, so we used

the placeholder value of -1.

Logistics

Collaboration Policy

The project is designed to be solved independently, but you may work with your partner from 3a, if you
wish. You may not work with someone new, unless both you and your new partner worked alone
for 3a. Grading will remain the same whether you choose to work alone or in partners; both partners will
receive the same grade regardless of the distribution of work between the two partners.

By the nature of this project, it could be hard to “split” the work between teammates. Instead, consider
pair programming (http://en.wikipedia.org/wiki/Pair programming), if you choose to work in partners.

Submission Instructions

Turn in a . tar file with both you and your partner’s last names in the file name (For example,
project3b-khandelwal-palkar.tar or project3b-han.tar) on an instructional machine. Your
tar file should include:

e firewall.py: remember, this file should include all your code.
e readme.txt
o Your (and your partner’s) full name and login name.
o (optional) Any comments/concerns on the project. This will not affect grading. We will
collect your opinions anonymously to design future projects better.
$ tar --cf project3b-han.tar firewall.py readme.txt
$ submit project3b

Note: We always use the latest submission.

Regrade & Late Policy

Your regrade request must be made within seven days after score release. Submit your new tar file on an
instructional machine, then email anuragk@eecs.berkeley.edu.

e final score = max{old score, new score * (regrading penalty)} * (your original late penalty)
o regrading penalty = 0.9 - (code difference in bytes) * 0.001
m We will provide a script that measures code difference.
o Of course, regrading penalty doesn’t apply if it turns out be auto-grader’s fault.
e You have only one opportunity for regrade request.

The late policy is simple; no slip dates. If submission is late, it is penalized as follows:
e <24 hours late, you lose 10%
e <48 hours, 20%
e <72 hours, 40%
e More than three days late, you can no longer hand-in the assignment.

Cheating

Simply put, DO NOT EVER TRY IT. We will do our best to protect our students from losing the value of
their honestly earned grades due to cheaters. We may perform manual inspection and use automated tools
(do not underestimate them) to detect potential plagiarism over all submissions.

Refer to the course webpage for more information. If you are not sure what may constitute cheating,
consult the instructor or GSIs. Assignments suspected of cheating or forgery will be handled according to
the Student Code of Conduct'. Apparently 23% of academic misconduct cases at a certain junior
university are in Computer Science”, but we expect you all to uphold high academic integrity and pride in
doing your own work.

! http://sa.berkeley.edu/code-of-conduct
2http://www.pcworld.com/article/l94486/C0mpu‘[er Science Students Cheating.html

10

DO’s and DON’Ts

DO’s
It is okay to use external libraries or applications to test your firewall.
You can modify not only firewall. py but also other source code files, but only for debugging
purposes.
o Do remember that you only submit the firewall.py file, and it should work with the
original code of other files.
Backup is always a good idea.
Feel free to surf the Web for general ideas, such as Python language/library references, network
protocol specifications, testing tool usages, and debugging tips.
o Admittedly, Google is faster and more accurate than GSIs in most cases.
Also it works 24/7.

® You can discuss with anyone algorithms, approaches, and concepts without details, but stay away
from your computer/code while doing so.

e We encourage you to share test strategies with your fellow students on Piazza, but only at the
high level (e.g., no test code).

e We recommend using Firefox in the VM, rather than installing other web browsers. The Firefox
installed in the VM was specially configured to suppress some seemingly strange behaviors.

DON’Ts

Do not create extra threads or processes.
Do not use any libraries other than Python 2.7 standard modules to implement the firewall.
Do not alter the network configurations of the VM. Do not install “Network Manager” package.
The VM relies on manual/delicate configurations to provide the firewall functionalities. You may
have to reinstall the VM if some configuration gets broken.

e All parts of the solution code must be your own; copying someone else’s code snippet is

strictly prohibited.

Do not share your code with anyone, other than your project partner.

Do not post any project-specific questions on Internet forums other than Piazza.

The project is led by Anurag Khandelwal (main), Shoumik Palkar, and Sangjin Han. Avoid
asking other GSIs project-specific questions.

11

